現代組合選擇理論的應用研究(doc 11頁)
現代組合選擇理論的應用研究內容提要:
證券及其它風險資產的投資首先需要解決的是兩個核心問題:即預期收益與風險。 那麼如何測定組合投資的風險與收益和如何平衡這兩項指標進行資產分配是市場投資者迫切需要解決的問題。正是在這樣的背景下,在50年代和60年代初,馬可維茲理論應運而生。
該理論依據以下幾個假設:
1、投資者在考慮每一次投資選擇時,其依據是某一持倉時間內的證券收益的概率分布。
2、投資者是根據證券的期望收益率估測證券組合的風險。
3、投資者的決定僅僅是依據證券的風險和收益。
4、在一定的風險水平上,投資者期望收益最大;相對應的是在一定的收益水平上,投資者希望風險最小。
根據以上假設,馬可維茲確立了證券組合預期收益、風險的計算方法和有效邊界理論,建立了資產優化配置的均值-方差模型:
目標函數:minб2(rp)=∑ ∑xixjCov(ri-rj)
rp= ∑ xiri
限製條件: 1=∑Xi (允許賣空)
或 1=∑Xi xi>≥0(不允許賣空)
其中rp為組合收益, ri為第i隻股票的收益,xi、 xj為證券 i、j的投資比例,б2(rp)為組合投資方差(組合總風險),Cov (ri 、rj ) 為兩個證券之間的協方差。該模型為現代證券投資理論奠定了基礎。上式表明,在限製條件下求解Xi 證券收益率使組合風險б2(rp )最小,可通過朗格朗日目標函數求得。其經濟學意義是,投資者可預先確定一個期望收益,通過上式可確定投資者在每個投資項目(如股票)上的投資比例(項目資金分配),使其總投資風險最小。不同的期望收益就有不同的最小方差組合,這就構成了最小方差集合。
2?2、夏普單因素模型(Shape Single –Index Model)
雖然馬可維茨理論模型為精確測量證券的風險和收益提供了良好的手段。但由於該模型的複雜性製約其實際應用,因此證券分析家企圖建立一個比較適用的理論模型,使其得到廣泛的應用。夏普(William Shape )於1963年建立了單因素模型。 夏普提出單因素模型的基本思想是:當市場股價指數上升時 ,市場中大量的股票價格走高;向反,當市場指數下滑時,大量股票價格趨於下跌。據此,可以用一種證券的收益率和股價指數的收益率的相關關係得出以下模型:
r it= Ai + βi rrmt+εit
該式揭示了證券收益與指數(一個因素)之間的相互關係。其中rit為時期內i證券的收益率。 rmt 為 t時期內市場指數的收益率。Ai 是截距,它反映市場收益率為0時,證券i的收益率大小。 與上市公司本身基本麵有關,與市場整體波動無關。因此 Ai 值是相對固定的。βi 為斜率,代表市場指數的波動對證券收益率的影響程度。εit 為t時期內實際收益率與估算值之間的殘差。
..............................